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Warm Up: Supervised Learning

e Find function from input space X to output space Y

h: X —Y

such that the prediction error is low.

Microsoft announced today that they
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Imitation Learning

* |nput:

— Sequence of contexts/states:

-

e Predict: ('E \

~

— Sequence of actions

g )

 Learn Using:

— Sequences of demonstrated actions



Example: Basketball Player Trajectories

e s =location of players & ball

* a = next location of player

e Trainingset: D = {(5,a)}

S
— S =sequence of s

S
— a =sequence of a

e Goal:learn h(s) = a




What to Imitate?

Human Demonstrations Animal Demonstrations
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Speech Animation

Learning to Optimize

Coordinated Learning
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* Animation artists spend 250% time on face
— Mostly eyes & mouth

— Very tedious We’ll focus on mouth & speech.









Prediction Task

Input sequence X =< T1,%2,. ., T|g| >

Taehwan
Kim

Output sequence Y =< y1,¥y2,... yYlyl = H Yt € RP

Goal: learn predictor h: X — Y
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Sequence of face configurations




Input Audio

—
sssssihihihggrraeaeaeaefff Speech Recognition

<
[ S/ =i=i=ic0 2= Speech Animation |

Retargeting
E.g., [Sumner & Popovic 2004]

Editing




A Decision Tree Framework for Spatiotemporal Sequence Prediction
Taehwan Kim, Yisong Yue, Sarah Taylor, lain Matthews. KDD 2015

A Deep Learning Approach for Generalized Speech Animation

Sarah Taylor, Taehwan Kim, Yisong Yue, et al. SIGGRAPH 2017

Sarah Taylor Taehwan Kim




Behind the Scenes of Pandora - The World of Avatar https://youtu.be/URSOqW<tLix4



https://youtu.be/URSOqWtLix4
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Hoang Le, Peter Carr, Yisong Yue, Patrick Lucey. SSAC 2017












State Representation
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distance & angles

to LCB
Input distance & angles
feature to GOAL
XLCB — B

for LCB

distance & angles

to BALL

closest 9 - TFeatures of closest player to
— active layer
closest 3

Data-Driven Ghosting using Deep Imitation Learning
Hoang Le, Peter Carr, Yisong Yue, Patrick Lucey. SSAC 2017



But Who Plays Which Role?

* All we get are trajectories!

— Don’t know which belongs to which role.

 Need to solve a permutation problem
— Naive baseline ignores this!



Coordination Model

Train Multiple Interacting Policies

Action 1 Action K Latent Structure

55 &

Policy 1 Policy K Observed Actions

Graphical Model Inference

Coordinated Multi-Agent Imitation Learning
Hoang Le, Yisong Yue, Peter Carr, Patrick Lucey. ICML 2017



Learned Roles

LCB

LB

LMF
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Strategy vs Tactics

* Long-term Goal:

— Curl around basket

e Tactics
— Drive left w/ ball
— Pass ball

— Cut towards basket

Eric
Zhan

Stephan
Zheng




Generative + Hierarchical
Imitation Learning

* Generative Imitation Learning e e

— No single “correct” action

e Hierarchical

— Make predictions at multiple resolutions

( \ Macro-goals

Generating Long-term Trajectories using Deep Hierarchical Networks
Stephan Zheng, Yisong Yue, Patrick Lucey. NIPS 2016

Generative Multi-Agent Behavioral Cloning
Eric Zhan, Stephan Zheng, Yisong Yue, Patrick Lucey. (under review)
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Activity Labels

TOUCH X WING THREAT CHARGE LUNGE
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Learning recurrent representations for hierarchical behavior modeling
Eyrun Eyolfsdottir, Kristin Branson, Yisong Yue, Pietro Perona, ICLR 2017
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Optimization as Sequential Decision Making

 Many solvers are sequential:
— Greedy
— Search heuristics
— Gradient Descent

e Can view as solver as “agent”
— State = intermediate solution
— Find a state with high reward (solution)



Optimization as Sequential Decision Making

Contextual Submodular Maximization
e Training set: (x, F,)

e Greedily maximize F, using only x
e Learning Policies for Contextual Submodular Prediction [ICML 2013]

Learning to Search
e Training set: (x=MILP, y=solution/search—trace)
e Find y (or better solution)

* Learning to Search via Retrospective Imitation [under review]

Learning to Infer
e Training set: (x=data/model, L=likelihood )

e |teratively optimize L (generalizes VAEs)
e lterative Amortized Inference [ICML 2018]

Stephane Ross




Optimization as Sequential Decision Making

Contextual Submodular Maximization
e Training set: (x, F,)

e Greedily maximize F, using only x
e Learning Policies for Contextual Submodular Prediction [ICML 2013]

Learning to Search
e Training set: (x=MILP, y=solution/search—trace)
e Find y (or better solution)
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Learning to Infer
e Training set: (x=data/model, L=likelihood )
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Stephane Ross
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Ravi Ongoing Research yalin - T
ke Risk-Aware Planning "

Low Risk | | High Risk

e Compiled as mixed integer program
e Challenging optimization problem




Preliminary Results

. e . i e A
o~ Optimal Solution A .
e N . « ¢ ™ 0OurApproach
. (Gurobi solver) BN PP
+ B 4 0 i | .
o add iR o
Ours | Gurobi Solver Ours | Gurobi Solver
Train | 1049 15241 Train | 0.732 0.305
Test 1127 25249 Test | 0.577 0.309
Avg Nodes Explored Avg Objective value

Learning to Search via Retrospective Imitation
R. Lanka, J. Song, A. Zhao, Y. Yue, M. Ono. (under review)
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Realtime Player Detection and Tracking

Human Operated Camera
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Problem Formulation

* |nput: stream of x;

— E.g., noisy player detections

* State sy = (X¢.t—k, At—1:t-K)

— Recent detections and actions y

e Goal:learn h(s;) = a; / G

— Imitate expert \_ J




Naive Approach

e Supervised learning of demonstration data
— Train predictor per frame

— Predict per frame B
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What is the Problem?

e Basically takes “infinite” training data to train

smooth model. §
— Via input/output examples <. \[u
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* In practice, people do post-hoc smoothing
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Cannot Rely 100% on Learning!

 People have models of smoothness!
— Kalman Filters
— Linear Autoregressors
— Etc...

 Pure ML approach throws them away!

— "black box”



Hybrid Model-Based + Black-Box

e Model-based approaches

— Strong assumptions, well specified _
o Conventional

— Lacks flexibility Models

— E.g., Kalman Filter, Linear Autoregressor

e Black-box approaches

— Assumption free, underspecified
— Requires a lot of training data
— E.g., random forest, deep neural network

e Best of both worlds?



Black Box Predictor Smooth Model

h(St = (X¢:t—k» at—l:t—K)) = argming, (f(s;) — a')? + A(g(ai—1.t-x) — a')?

_ fGsp+Ag(at—1:t-k)
B 1+




Functional Regularization

L

D

Complex Predictors F

Smooth Complex
Predictors H

h(St = (Xt:t—k at—l:t—K)) = argming, (f(s¢) — a')? + Ag(as—1.t-x) — a')?

_ fGso+Ag(at—1:t—k)
- 1+

Smooth Imitation Learning for Online Sequence Prediction
Hoang Le, Andrew Kang, Yisong Yue, Peter Carr. ICML 2016



Our Result

f(se) + Ag(at—1:t—k)

h(St = (xt:t—Kr at—l:t—K)) — 1+ A

Smooth Imitation Learning for Online Sequence Prediction
Hoang Le, Andrew Kang, Yisong Yue, Peter Carr. ICML 2016



ualitative Comparison

Learning Onlin Recurrent Decision Trees

Jianhui Chen, Hoa






Lessons Learned

* Intuition: Let model do most of work
— Black box (deep neural net) adds flexibility

— “Regularization” improves learning

e Exponentially faster convergence compared to SEARN

\

Exploit Lipschitz
* Applicable to other approaches?  fromsmootn

temporal dynamics

— Deep learning + robust control?
e w/ Aaron Ames @Caltech
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New Frontiers in Imitation learning

* Incorporating Structure
— Smoothness of output space
— Latent structure of input space
— New feedback oracles

* New Algorithmic Frameworks

— Black Box + Dynamics Models
— Black Box + Graphical Models
— Retrospective Imitation Learning

* Cool Applications!
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