New Frontiers in Imitation Learning

Yisong Yue
Warm Up: Supervised Learning

- Find function from input space X to output space Y

$$h : X \longrightarrow Y$$

such that the prediction error is low.
Imitation Learning

• Input:
 – Sequence of contexts/states:

• Predict:
 – Sequence of actions

• Learn Using:
 – Sequences of demonstrated actions
Example: Basketball Player Trajectories

- \(s \) = location of players & ball
- \(a \) = next location of player

- Training set: \(D = \{ (\hat{s}, \hat{a}) \} \)
 - \(\hat{s} \) = sequence of \(s \)
 - \(\hat{a} \) = sequence of \(a \)

- **Goal:** learn \(h(s) \rightarrow a \)
What to Imitate?

Human Demonstrations

Animal Demonstrations

Computational Oracle
Speech Animation

Coordinated Learning

Hierarchical Behaviors (Generative)

Learning to Optimize

Smooth Imitation Learning
Smooth Imitation Learning

Coordinated Learning

Hierarchical Behaviors (Generative)

Speech Animation

Learning to Optimize

Smooth Imitation Learning
• Animation artists spend ≥50% time on face
 – Mostly eyes & mouth
 – Very tedious

We’ll focus on mouth & speech.
Prediction Task

Input sequence \(X = \langle x_1, x_2, \ldots, x_{|x|} \rangle \)

Output sequence \(Y = \langle y_1, y_2, \ldots, y_{|y|} \rangle, y_t \in \mathbb{R}^D \)

Goal: learn predictor \(h : X \rightarrow Y \)

Input sequence
- Frame: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
- Token: - p p r ih ih d d ih ih ih ih k k sh sh sh sh sh uh uh n -

Phoneme sequence

Output sequence
- Frame number: 2 4 6 8 10 12 14 16 18 20 22 24
- Dimension 1

Sequence of face configurations
Input Audio

Speech Recognition

Speech Animation

Retargeting
E.g., [Sumner & Popovic 2004]

(chimp rig courtesy of Hao Li)

Editing
A Decision Tree Framework for Spatiotemporal Sequence Prediction
Taehwan Kim, Yisong Yue, Sarah Taylor, Iain Matthews. KDD 2015
A Deep Learning Approach for Generalized Speech Animation
Sarah Taylor, Taehwan Kim, Yisong Yue, et al. SIGGRAPH 2017
Behind the Scenes of Pandora - The World of Avatar

https://youtu.be/URSOqWtLix4
Smooth Imitation Learning

Coordinated Learning

Hierarchical Behaviors (Generative)

Speech Animation

Learning to Optimize

Smooth Imitation Learning
Our Approach
State Representation

Data-Driven Ghosting using Deep Imitation Learning
Hoang Le, Peter Carr, Yisong Yue, Patrick Lucey. SSAC 2017
But Who Plays Which Role?

• All we get are trajectories!
 – Don’t know which belongs to which role.

• Need to solve a permutation problem
 – Naïve baseline ignores this!
Coordination Model

Coordinated Multi-Agent Imitation Learning
Hoang Le, Yisong Yue, Peter Carr, Patrick Lucey. ICML 2017
Smooth Imitation Learning

Coordinated Learning

Hierarchical Behaviors (Generative)

Speech Animation

Learning to Optimize

Smooth Imitation Learning
Strategy vs Tactics

• Long-term Goal:
 – Curl around basket

• Tactics
 – Drive left w/ ball
 – Pass ball
 – Cut towards basket
Generative + Hierarchical Imitation Learning

- Generative Imitation Learning
 - No single “correct” action
- Hierarchical
 - Make predictions at multiple resolutions

Generating Long-term Trajectories using Deep Hierarchical Networks
Stephan Zheng, Yisong Yue, Patrick Lucey. NIPS 2016

Generative Multi-Agent Behavioral Cloning
Eric Zhan, Stephan Zheng, Yisong Yue, Patrick Lucey. (under review)
Drosophila Behavior

Eyrun Eyolfsdottir
Activity Labels

Learning recurrent representations for hierarchical behavior modeling
Eyrun Eyolfsdottir, Kristin Branson, Yisong Yue, Pietro Perona, ICLR 2017
Optimization as Sequential Decision Making

• Many solvers are sequential:
 – Greedy
 – Search heuristics
 – Gradient Descent

• Can view as solver as “agent”
 – State = intermediate solution
 – Find a state with high reward (solution)
Optimization as Sequential Decision Making

Contextual Submodular Maximization
• Training set: \((x, F_x)\)
• Greedily maximize \(F_x\) using only \(x\)
• Learning Policies for Contextual Submodular Prediction [ICML 2013]

Learning to Search
• Training set: \((x=\text{MILP}, y=\text{solution/search−trace})\)
• Find \(y\) (or better solution)
• Learning to Search via Retrospective Imitation [under review]

Learning to Infer
• Training set: \((x=\text{data/model}, L=\text{likelihood})\)
• Iteratively optimize \(L\) (generalizes VAEs)
• Iterative Amortized Inference [ICML 2018]
Contextual Submodular Maximization

- Training set: \((x, F_x)\)
- Greedily maximize \(F_x\) using only \(x\)
- Learning Policies for Contextual Submodular Prediction [ICML 2013]

Learning to Search

- Training set: \((x=\text{MILP}, y=\text{solution/search−trace})\)
- Find \(y\) (or better solution)
- Learning to Search via Retrospective Imitation [under review]

Learning to Infer

- Training set: \((x=\text{data/model}, L=\text{likelihood})\)
- Iteratively optimize \(L\) (generalizes VAEs)
- Iterative Amortized Inference [ICML 2018]
Ongoing Research
Risk-Aware Planning

- Compiled as mixed integer program
- Challenging optimization problem
Preliminary Results

Optimal Solution (Gurobi solver) vs Our Approach

<table>
<thead>
<tr>
<th></th>
<th>Ours</th>
<th>Gurobi Solver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Train</td>
<td>1049</td>
<td>15241</td>
</tr>
<tr>
<td>Test</td>
<td>1127</td>
<td>25249</td>
</tr>
</tbody>
</table>

Avg Nodes Explored

<table>
<thead>
<tr>
<th></th>
<th>Ours</th>
<th>Gurobi Solver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Train</td>
<td>0.732</td>
<td>0.305</td>
</tr>
<tr>
<td>Test</td>
<td>0.577</td>
<td>0.309</td>
</tr>
</tbody>
</table>

Avg Objective value

Learning to Search via Retrospective Imitation
R. Lanka, J. Song, A. Zhao, Y. Yue, M. Ono. (under review)
Speech Animation
Coordinated Learning
Hierarchical Behaviors (Generative)
Learning to Optimize
Smooth Imitation Learning
Realtime Player Detection and Tracking

Human Operated Camera

Features

Train

Predict

Learned Regressor

Autonomous Robotic Camera
Problem Formulation

• Input: stream of x_t
 – E.g., noisy player detections

• State $s_t = (x_{t:t-K}, a_{t-1:t-K})$
 – Recent detections and actions

• Goal: learn $h(s_t) \rightarrow a_t$
 – Imitate expert
Naïve Approach

• Supervised learning of demonstration data
 – Train predictor per frame
 – Predict per frame
What is the Problem?

• Basically takes “infinite” training data to train smooth model.
 – Via input/output examples

• In practice, people do post-hoc smoothing
Cannot Rely 100% on Learning!

• People have models of smoothness!
 – Kalman Filters
 – Linear Autoregressors
 – Etc...

• Pure ML approach throws them away!
 – ”black box”
Hybrid Model-Based + Black-Box

• Model-based approaches
 – Strong assumptions, well specified
 – Lacks flexibility
 – E.g., Kalman Filter, Linear Autoregressor

• Black-box approaches
 – Assumption free, underspecified
 – Requires a lot of training data
 – E.g., random forest, deep neural network

• Best of both worlds?
New Policy Class

\[h(s_t \equiv (x_{t:t-K}, a_{t-1:t-K})) = \arg\min_{a'} (f(s_t) - a')^2 + \lambda (g(a_{t-1:t-K}) - a')^2 \]

\[= \frac{f(s_t) + \lambda g(a_{t-1:t-K})}{1 + \lambda} \]
Smooth Imitation Learning for Online Sequence Prediction
Hoang Le, Andrew Kang, Yisong Yue, Peter Carr. ICML 2016

\[
\begin{align*}
 h(s_t \equiv (x_{t:t-K}, a_{t-1:t-K})) &= \arg\min_{a'} (f(s_t) - a')^2 + \lambda (g(a_{t-1:t-K}) - a')^2 \\
 &= \frac{f(s_t) + \lambda g(a_{t-1:t-K})}{1 + \lambda}
\end{align*}
\]
Our Result

\[h(s_t \equiv (x_{t:t-K}, a_{t-1:t-K})) = \frac{f(s_t) + \lambda g(a_{t-1:t-K})}{1 + \lambda} \]

Smooth Imitation Learning for Online Sequence Prediction
Hoang Le, Andrew Kang, Yisong Yue, Peter Carr. ICML 2016
Qualitative Comparison

Learning Online Smooth Predictors for Real-time Camera Planning using Recurrent Decision Trees
Jianhui Chen, Hoang Le, Peter Carr, Yisong Yue, Jim Little. CVPR 2016
Lessons Learned

• **Intuition**: Let model do most of work
 – Black box (deep neural net) adds flexibility
 – “Regularization” improves learning
 • Exponentially faster convergence compared to SEARN

• Applicable to other approaches?
 – Deep learning + robust control?
 • w/ Aaron Ames @Caltech

Exploit Lipschitz from smooth temporal dynamics
Smooth Imitation Learning

Coordinated Learning

Hierarchical Behaviors (Generative)

Speech Animation

Learning to Optimize

Smooth Imitation Learning
New Frontiers in Imitation learning

• **Incorporating Structure**
 – Smoothness of output space
 – Latent structure of input space
 – New feedback oracles

• **New Algorithmic Frameworks**
 – Black Box + Dynamics Models
 – Black Box + Graphical Models
 – Retrospective Imitation Learning

• **Cool Applications!**
References

Smooth Imitation Learning for Online Sequence Prediction
Hoang Le, Andrew Kang, Yisong Yue, Peter Carr. ICML 2016

Learning Smooth Online Predictors for Real-Time Camera Planning using Recurrent Decision Trees
Jianhui Chen, Hoang Le, Peter Carr, Yisong Yue, Jim Little. CVPR 2016

A Decision Tree Framework for Spatiotemporal Sequence Prediction
Taehwan Kim, Yisong Yue, Sarah Taylor, Iain Matthews. KDD 2015

A Deep Learning Approach for Generalized Speech Animation
Sarah Taylor, Taehwan Kim, Yisong Yue, Moshe Mahler, James Krahe, Anastasio Rodriguez, Jessica Hodgins, Iain Matthews. SIGGRAPH 2017

Generating Long-term Trajectories using Deep Hierarchical Networks
Stephan Zheng, Yisong Yue, Patrick Lucey. NIPS 2016

Learning recurrent representations for hierarchical behavior modeling
Eyrun Eyolfsdottir, Kristin Branson, Yisong Yue, Pietro Perona. ICLR 2017

Data-Driven Ghosting using Deep Imitation Learning
Hoang Le, Peter Carr, Yisong Yue, Patrick Lucey. SSAC 2017 (Best Paper Runner Up)

Coordinated Multi-agent Imitation Learning
Hoang Le, Yisong Yue, Peter Carr, Patrick Lucey. ICML 2017

Learning Policies for Contextual Submodular Prediction
Stephane Ross, Jiaji Zhou, Yisong Yue, Debadeepta Dey, J. Andrew Bagnell. ICML 2013